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An accurate description of the Martian gravity field is essential to support such
activities as autonomous navigation and Mars landing during future missions.
From covariance anaysis for some specific ewes, saellite-to-satellite (STS) Doppler
data is known to be useful in accurately determining the gravitational field. In
this paper, an approximate anaysis is presented to show that the knowledge of
the Mars gravity field can be improved by a factor of 10 to 20 with STS Doppler
data. Both high-low and low-low satellite configurations are examined. The
analysis is in the frequency domain proceeding from two-dimensional Fourier
transforms of Hill’s variational equations. ‘I’he transfer functions for high-low
and low-low STS data are obtained and an optimal filter is derived. The results
are applicable for the determination of short wavelength gravitationa field.

INTRODUCTION

The Mars Global Surveyor and the Mars Pathfinder spacecraft are scheduled to be launched
by the end of 1996. NASA is giving serious consideration to a Mars Surveyor program with two
launches at every opportunity through the year 2005. la this context, two or more satellites are
likely to orbit Mars simultaneously during some overlapping period of their lifetime. It has been
shown! by detailed covariance analysis (of a few cases) that satellite-to-satellite (STS) Doppler
data is very useful in the accurate determination of the Martian gravity field. In this paper, an
approximate analysis is presented for a preliminary assessment on the improvement to be obtained
in the high-frequency or short wavelength Martian gravity field with STS Doppler data, avoiding
costly, time-consuming and computation-intensive covariance analysis. With the present emphasis
on on-board and autonomous navigation, STS Doppler data may become a readity in the not so
distant future.

Satellite-to-satellite Doppler data can be obtained in two different configurations of the two
spacecraft involved. (In this paper, sometimes Satellite-to-satellite Doppler data will also be
designated as STS data, for convenience) A Communications-Relay cum Navigation Satellite may
be deployed in a high orbit (of radius possibly 15,000-30,000 km) about Mars and the other in a
low orbit at an atitude of about 200 km. This case will be referred to as the high-low satellite
configuration.
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Otherwise, two spacecrafts in low orbits such as for high-resolution imaging purposes or atmospheric
studies, may be considered for STS data. The latter will be designated as the low-low satellite
configuration. Both these cases are examined in the anaysis below and the detailed results will be
presented in the paper.

Some Preliminaries

The analysis is based on Hill’s variational equations for circular orbits. The perturbations are
considered to be derived from gravitational harmonics only. In particular, the probelm is solved
using two-dimensional Fourier transforms in Cartesian coordinates (for the upper half-space)
for the conservative gravitational field. Due to the assumptions made in the analysis, the results
must be considered appropriate for high-frequency or short wavelength harmonics only.

The STS data consists of the relative velocity between the two satellites under consideration.
For satellites in the high-low configuration, the satellite in high orbit is essentially unaffected by
the higher degree and order gravitational harmonics except the fundamental, spherically symmetric
field. Hence the relative velocity between the spacecraft can be attributed to the high frequency
gravitational field only. In the low-low configuration, for two satellites in the same low circular
orbit, but separated by a finite distance (separated in true anomaly) between them, the relative
velocity is obtained from the change in the non-spherical gravitational field due to the difference
between the spacecraft positions.

The relative velocity between the two spacecraft is derived in the (Fourier) transform domain
in terms of the high-frequency (or non-spherical) part of the gravitational field by solving Hill’s
equations. The down-track, cross-track and radial (positive outward) directions of the rotating
coordinate system attached to the spacecraft will be identified with the positive x, y and z directions
of the upper half-space. In turn, the Cartesian coordinates of the upper half-space will lead to
solving the problem in the frequency domain by Fourier transforms. The perturbation forces
in Hill’'s equations are also expressed in terms of the two-dimensional Fourier transforms of the
anomalous (or spherically asymmetric part of the) gravitational field for these purposes. With an
optimal filter in the frequency domain, the improvement in the spatial power spectral density of
the gravity field is evaluated from the relative velocity measurements or STS (Doppler) data. This
procedure primarily completes the analysis.

All the results from the crucial steps of the analysis are included in this paper for both the
high-low and low-low satellite configurations. Results of parametric studies varying the satellite
atitude and data noise are presented and discussed.

ANALYSIS

Hill’s equations® for he perturbations of a spacecraft nominally n a circular orbit are given

by
£-2n-- 30’ = f, (1)
i+ 2mf = f, (2)
CHn’C= f (3)
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where (£,7,() arc the perturbations in the spacecraft position in tile radial, down-track and cross-
track directions respectively. £ and £ denote the velocity and acceleration in the radial direction
and similarly (7,7) and (¢,{) in the down-track and cross-track directions. n denotes the mean
motion of the spacecraft in its nomina circular orbit and(n= Vo/R),where V. and R arc the
nominal circular speed and orbital radius.

The most crucial assumption in the approximate analysis is that the planetary surface
shall be considered “flat”. In particular, let the Cartesian (z-y) plane denote the planetary
surface with the z axis paralle to the nominal down-track motion of the spacecraft and the y axis
parallel to the cross-track direction and pointing in the same manner. The z axis points ‘radialy
upward”, in the upper half-space.

With this nomenclature, it is readily seen that

£ = (d¢/dx) (dz/dt) = Vo (d€/dz) 4

and similarly, € =- V2(d?€/dz?). In turn, the perturbation Egs. (I-3) canbe rewritten as in

Vae" —2nVey' - 3nte = fe (5)
‘% +27LV0§'-fn (6)
Vi +nt¢ = f; (7)

where (') and (") denote the first and second derivatives with respect to x. The two-dimensional
Fourier transforms in (x, y) of Egs. (5), (6) and (7) are readily obtained:

—(wi Vi o+ 3712)5~ - 2nVjwei) = f{ (8)
20V jw, € — wiVEd = f, 9)
_wzvg E -} nzé-' == f< (IO)

where the Fourier transform of any function G(x, y; z)has been implicitly defined as in
G(ws, wy; 2) / G(z, y; 2) exp{- j(wzz twyy)} dzdy. (11)

The perturbation forces ( f¢, fy, f¢) and their trapsforms are derived from the scalar anomalous
gravitational potential G(z,y; z) and its transform, G(w.,wy;z). In particular, G(z,y; z) satisfies
Laplaces’s equation, with prescribed values on the surface, z = O;

VG = O; G(z,y;0) = G(z,y). (12)
It is casily derived3* that
Gws, wy; 2) = G(w) e Iz (w2= w4 wl) (13)

where G(w) and G(=, Y, ; O) are Fourier transform pairs. Since the perturbation forces are obtained
from the (negative of the) gradient of the anomalous gravitational potential,

(fﬁ, fna f() = "(a/az‘) 8/(’)2:’8/6?/)(;(113/;3) (14)
(-ff’ iﬁ? f() = (|w|, "'jwz,"‘j(’-’y)é(w)c—lwlz. (15)
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Substituting Iq. (15) in Eqgs. (8) through (1 O), solutions for the perturbations in the spacecraft
position arc obtained in the transform domain as follows:

€= ~{lwl/(wi Vi)} Glw) e It (16)
if = {jws/ (W3 V7)) Glw) e (17)
(= {joy /(@I V§)} Gle) e It (18)

where, the spacecraft nominal altitude, ‘z = h’, above the planetary surface has specifically
been entered in the equations and it has aso been assumed that Rw, > 1.

Since the relative velocity in the down-track direction, v, = (dn/dt) = Vo(dn/dz), its trans-
form is given by (from the definition in Eq. (11) and Eq. (17) for 7)

b = (jwa)Voit = —(1/Vo)G(w)e I, (19)
Similarly, it is easily shown that

By = (jwa)Vol = —(wy/wz)(1 [Vo)G(w) 11 (20)

b, = (jwe)Vab = (Jol/jws) (1/Vo)G(w) e lIh, (21)

Eqgs.(19), (20) and (21) arc the measurement equations of the Doppler data on the
relative velocity between two satellites in the high-low configuration.

The relative velocity v, between 2 satellites separated by a distauce A in the same low circular
orbit (low-low configuration) is given by’

vy=vz(z + Al2) — vy(z — Al2)

. d aﬂq _ d’n
- Adz {Vo dz} - VOAW
so that in the transform domain
By = —(2/Vo)j sin(weA/2) G(w) e~ I¥Ik (22)

In this paper, the gaussian-weighted average Of the pointwise or local surface gravity anomaly
is examined for evaluating the merits of determining the high-frequency gravity field with satellite-
to-satellite Doppler data. Let A(z,y) and A,u(z, y) denote the pointwise surface gravity anomaly
and its gau ssian-weight cd average; they are given by

Mz,y) =-(0/02)G(z,y;z) at z= O (23)
1 1
Xav(Z5 Y) T 53 / Alp, @) exp{--55(z - P+ (y - ¢)*)} dp dg (24)

where o is the appropriately chosen®* spread’ of the gaussian weighting kernel. It may be noted
that the ‘pointwise surface gravity anomaly’ is simply the radia or z-directional acceleration fe on
the planetary surface (at z = O) as in Eqn. (14).

Let ;\au(:z:_‘, y) be the “optimally estimated” gaussian-averaged pointwise surface gravity
anomaly and A,, denote the error as in

;\aU(za y) = 5‘tw(z’ Y) - Aau(z, ¥) (25)
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Then the merits of determining the high-frequency gravity field withdata from satellites in the
“high-low” and “low-low” configuration will be evaluated by the minimum value(s) of the square-
error integral in the estimated surface gravity anomaly (gaussian-averaged) as in

A* = Min E {[Aao(z, v))*} (26)
= [ [Gasta, )= Ak, 0} dady @7)

By definition (and choice) the optimal estimator will yield the minimum square-error integral
in equations (26) and (27). In particular, it follows from Parseval’s theorem that

AY = (]/47rz) // ||:\m,||2 dwy dw, (28)
= (1/4x?) //{’\uv(w) T (W)} duw, dwoy. (29)

From now onwards, the ( *) above the argument as in :\(w), denoting Fourier transform will be
dropped for convenience; the context will make it clear, when the discussion is in the frequency (w)
domain.

Furthermore, from equations (13), (15), (23) and (2.5), A(w)and A,,(w) can be obtained as in

Aw) = w|G(w) (30)
Naol®@) = ol exp(—0%w? 2) G(w) (31)

= p(w) G(w) (32)

where p(w) = |w|exp(—o’w?/2) (33)

Let the general k-vector of measurements be denoted by
dw) = Hw)Gw) + W (34)

d(w) is the S'1'S Doppler (observational) data. I (w)isthe transfer function between the observa-
tions and the anomalous gravitationa field G(w), as in equations (19)-(21) for two satellites in the
high-low configuration and as in (22) for low-low satellites. Wis a k-vector of measurement (noise)
errors. Let X,,(w) be optimally determined from

Aav(w) = P7(w) d(w) = $7(W) [H(w) Gw) + W] (35)

where ¥(w) is a k-vector optimal estimator and the superscript ()7, implies the transpose in
matrix algebra. From (32) and (35), it is readily seen that

Aa(w) = {7 (@) H(w) - pw)} G(w) + T (w) W (36)
IAav(@)? = {#7(—jw) H(—jw) - p(—jw)} Pa(w) {H " (jw) ¥(jw) - p(iw)}

+ T (—jw) Pw(w) Y(jw) (37)

where ®a(w) = E{||G(w)||*}. (38)

Similarly, @w(~) is the power spectral density of the measurement noise. Since the integrand in
(28) is positive semi-definite, the minimum value of the integral for A* is attained, if the filter (w)
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is chosen so that the first variation &||A.,(w)||?*= O. In fact, from Eq. (37), the first variation is
derived as in

6 [Aau(@)F = 897 (—j) {H (= jeo) @a(w) U1 T (jw) (i) = p(w)]+ Pw(je) $(jw))
+ {[p7 (= jw) H(—jw) — p(jw)] Pa(w) HT(jw) + 7 (~jw) dw(w)} 9 (jw).
(39)

The condition that the first variation must vanish for any arbitrary choice of éi, implies that the
terms within the curly brackets in Eq. (39) must equal O. Hence the optimal filter is given by

P(w) = {H(~jw) Pe(w) HT(jw) + 2w(w)} 7! HEILA) P6(w) p(iw) (40)

with necessary assumptions on data noise and the gravitational potential so that all cross-correlations
vanish identically. Substituting Eq. (40) in (37) and using “the matrix-inversion lemma”

{Ar — AR A7 AN} T = AT AT A {Ar — An AT AR T A AT

with Al = ®w, A;! = ®5, A,= H and A2;=H? | it is readily seen that the integrand in
Eq. (28) can be rewritten as in

e Fe) P ) )
el = T gy PGy o3 10 (41)

In particular, for the optimal estimator, the minimum square-error integral A*(the familiar ‘cost
function”) is given by

A" = Min E{[|Aau (@)%}

b $g(w) p(—jw) p(Jw)
T Ax? // 1+ O6(w) HT(jw) q’;vl H(—jw) dwy dwy. (42)

High-Low Satellite-to-Satellite Doppler Measurements

For the high-low satellites, from Eqgs. (19)-(21), the transfer function can be written as in
Hyi(w) = —exp(~wh) (1/Vo) {1, (wy/wz), -j(W/wZ)}. (43)

Substituting Eq. (43) in (42) and transforming to polar coordinates in the (w,—w,) plane, we
obtain

. __]_ 00 1 2n do
A= o / P #e) | 5 / Ty wionwrerd CL UG
where A, (w) = P6(w) ezp(-2wh) (1/VE) {N/ (2x2R%62)}. (45)

N is the total number of Incasurements, o,, the high-low STS data noise and R is the planetary
radius in Yq. (45). In particular, the last term in the curly brackets denotes the “uniform” density
of measurements per unit area, with the Mercator projection area for Mars being used, to make the
measurement density independent of latitude. The inner integral within the square brackets
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in Eq. (44) has al the information from observations. The reduction in the variance (from the a
priori) given by the inner integral is easily calculated from

2 1 i da
D o= —_—
n 2 1+ 2 Ap(w) seC’a
= 1= {2A.() V{1 + 2A,(w)}1/? (46)

for each spatial frequency, w. The notation D2, in Eq. (46), stands for the reduction of the power
spectral density of the error in average surface gravity anomaly, due to the information obtained
from the high-low satellite-to- satellite Doppler data. D,, (w) is itself a measure of the effectiveness
of the data at any given frequency, w. The frequency response, D, (w) will be shown plotted for
various cases when discussing results.

The “outer integral“ in Eq. (44) for the square err or integral in the average surface gravity
anomaly, can be obtained by numerical integration of

Ao = 51;; /0 () ®6(W) D} (w) w dw (47)

where p(w) =w exp(—o?, w?/2) for the average surface gravity anomaly.0oa. denotes the “aver-
aging distance’, for the Gaussian kernel over the planetary surface, taken tobe about 59.29 km
for Mars corresponding to 10. The a priori average gravity anomaly and the a posterior error
in the average gravity anomaly (the radial acceleration on the surface and the residua error) are

presented in the Table at the end.
Low-Low STS Data Measurements

For two satellites in the low-low configuration, from Eq. (32) the transfer function is given by
Hy(w) = —(27) exp(—wh) (1/Vp) sin (wA/2) (48)

where A is the separation distance between the satellites. ¥rom Eqs. (48) and (42), it is
easily derived

. bl_ [e o) 9 1 /271’ da
R RO L L Ol = A S T L
where Ay(w) = ¥g(w) ezp(—2wh) (1/VE) w? A’ {N/ (2x?R%a2)}. (50)

The dependency on the separation distance A is clearly brought out in l5q. (50); once again, oy,
stands for measurement noise.

The reduction in the degree variance for the low-low satellite system is given by

=1 1" do
H 2 1 4 Ay(w) cos? a

= —===—————2  at each spatia frequency, w. (51)

V1 + Auw)




In the case of the low-low satellite observation system, the effects of planetary rotation on the
transfer function and on the results in Eqgs. (49) and (51) are significant Since a rotation in the
z —yplane corresponds to a rotation of equal magnitude in the Fourier transforms, Eq. (49) just
gets modified as in

.1

o0 1 27 do
Al ey v ey e I CL

Analogous to Eq. (51), D? is given by
: 1
T VI A@ITTA 8 Au(w)]

In Eqs. (52) and (53) above, & denotes the angle by which Mars rotates about its axis during one
period of the orbiting low-low satellite system. The planetary rotation dots not play any significant
role in the high-low observations.

(53)

The frequency response of the low-low satellite system D, (w) will be shown plotted for several
cases in the section On results. Also, the a priori average surface gravity anomaly and a posterior
error values for a number of low-low satellite-to-satellite observation systems are shown tabulated
in the end. For the sake of brevity, only results including planetary rotation correction will be
discussed for the low-low satellite systems.

Review of Analysis

Proceeding from Hill’s equations, Doppler measurement of the relative velocity between two
satellites is shown related to the anomalous gravitational potential asin Egs. (19) through (22).
Then a minimum cost criterion is stipulated as given in Egs. (26) through (29) in terms of the
estimation error in the averaged pointwise surface gravity anomaly, squared and integrated over
the ‘planetary surface’. The optimal estimator is derived in (40) and the minimum value of the
square-error integral is obtained in (42) depending upon the data type (for the transfer function)
and the power spectral density of the data noise and of the surface gravity anomaly. This completes
the analysis.

RESULTS ANI) CONCLUSIONS

‘he reduction in the estimation error in the average surface gravity anomaly, D,,, correspond-
ing to the square-root of Eq. (46), with observations from the high-low satellite system, is shown
plotted in Figure 1. It is useful to recall that the lower the reduction factors are, the more
desirable the observational system is for the determination of the Martian gravitational field,

The curves in Figure 1 provide information on the frequency response of the high-low satellite-
to-satellite Doppler measurements. The number of obser vations is taken to be 25,000 at a Doppler
noise level of 0.1 mm/s. Three different PSI) (power spectral density) profiles for the a priori
anomaly, are examined. ‘I’hey include the spectra of the gravitational potential coefficients and of
the uncertainties in the coeflicients (namely, “o™s) published by Konopliv and Sjogren’. The third
a priori 1'S1) for examination throughout this paper is given by Kaula’s rule for Mars®:

n B -8
Degree Variance = Z (dim + bim) 22 (2n 4+ 1) -156-9-4.52—]—9_— (54)
m=0 n



The high-low S1'S data is seen to best advantage at the “low” to intermediate frequencies in the
figure; it must beremarked that the analysis is based clearly on the assumption of high frequency
perturbations both in terms of Fourier transforms as well as in the derivation of the relative velocity
transfer functions for the observation systems. Since the “power” at Jow frequencies (corresponding
to the harmonics of degree 2 through 10, say) is substantial, consistent with the role of the a priori
as seen in Igs. (45) and (46), highly sensitive response is indicated in Figure 1, which however,
is not valid. On the contrary, since the PSD of the uncertainties is relatively very small at the
low degree gravitational harmonics (which are well known), there is no substantial improvement
to be obtained from high-low STS data corresponding to that frequency range as seen in Figure
1 from the response to the a priori from Marsb0c-os. At high spatial frequencies, the high-low
system deteriorates in its response, though it is seen that upto degree and order 50, substantial
improvement can be obtained in determining the Martian gravity field.It must be remarked that
the high-low STS data analysis here, assumes that all the three components of the relative velocity
are fully observable at each data point, as if one were to deal with a GPS-like system of high
satellites.

Results of sensitivity studies (in terms of data noise and satellite altitude) are shown plotted
in Figure 2. It is observed that when the Doppler noise level increases from 0.01 to 0.1 mm/s, the
estimation error in the average surface gravity anomaly increases by about an order of magnitude for
observations from high-low systems. Furthermore,at low (spatial) frequencies, while the altitude
of the ‘low’ satellite of the high-low system is not too detrimental, it is seen that increasing the
atitude from 200 to 378 km, reduces the “cut-off” spatial frequency corresponding to about 50
harmonics. At a reduction factor of 0.1, a satellite at 200 km altitude is superior to one at 378 km,
at both measurement noise levels examined. In short, low altitudes are far more desirable.

The frequency response of low-low STS data observational systems is shown in Figures 3a
and 3b. The genera features of al the results discussed for the high-low configuration seem to be
applicable for the case of low-low observational satellites also. A careful examination will reveal, in
addition, that the low-low satellite response for the same data noise level and satellite(s) altitude is
dlightly inferior to that of the high-low system; however, changing the separation distance between
the low-low satellites from 50 km (the nominal value in Figure 3) to higher values, alters this picture
as will be seen in Figure 5.

A direct comparison of the high-low and low-low STS Doppler data observational systems is
provided in Figure 4. At a separation distance of 50 kin for the low-low satellites, (for the cases
examined in Figure 4) the low-low system seems to be inferior to the high-low system in terms of
frequency response. Actually, the frequency response of the low-low system for a data noise level
of 0.01 mm/s, fals clearly between the response curves for the high-low system corresponding to
data noise levels of 0.01 and 0.1 mm/s. In Figure 5, the high-low satellite system is compared to
the low-low system with a separation distance of 100 kin (between the two low altitude satellites
in the same circular orbit). At data noise levels of 0,001, 0.005 mm/s, the low-low system (with A
= 100 km), is clearly superior in its frequency response characteristic, in comparison to a high-low
system at 0.01 mm/s. At the same noise level of 0.01 nim/see, the low-low system is just as good
as the high-low examined here and in fact, is dlightly better at high frequencies.

The results in Figure 6 are reproduced from Ref. ( 1), from detailed covariancc studies for a
High-Low system. The high satellite was in an orbit at an inclination of about 10°, while the low
satellite was in a polar orbit at about 380 km. The advantage of STS data in determining the Mars
gravitational field is distinctly brought out from the a posteriori RMS spectrum. Actually, the a
priori rms values for the gravity spectrum for harmonics of degree 20 and above, in those studies
were approximately 2X107. The reduction achieved in the RMS spectra serves to confirm the
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validity of the analysis presented” here.

Finally the square error integral in the average gravity anomaly, as given by kgs. (47) and
(52) (for the high-low and the low-low systems respectively) have been obtained by numerical
integration. It may be noted that the a priori values are obtained, simply by integrating with the
transfer functions set to zero. For the various cases examined, the results are shown in Table 1.
The results arc very sensitive to the radius of the “averaging” Gaussian kernel. Both a 1° and
(3°) spread have been considered. Results for separation distances of 50 and 100 km between the
satellites arc presented for the low-low system. Once again, a low-low system with a separation
distance of 100 km, seems to match the performance of the high-low system at the same data noise
level.
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Figure 3
Low-Low STS Doppler Data Performance Evaluation with Different
A Priori PSD for Mars Gravity Field and Data
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RMS Uncertainty
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Figure 6

Effects of Data Type and Data Span on Spectral Uncertainties

............ Levoresrsoesessessssseens
(Data Type and Data Span
|
0 6 Stns | Week (94) [ e
p L0
o 6 Stns -2 Weeks (94:96) | e, P I Do G
Lo 5] o © o
0 6 Stns -3 Weeks (94; 95: 96) (] 0
Gy o J) o %
A STS Data - 1 Week LL[{J °
................... D o -
oy
1 mo....ﬂ.,....a.‘.v...oé'
...................... a... o )
“““““““““““““““““““““ Ay D - A o ? fo) O A A
o 50 ? O S A ?
o ~ 0 o ®) JaY
....... ;] e .oo OO AA S
““““““““ .E'.ﬁ] o 8 © [ A P
o O R IR IEEE IR
o] 0 Z 6 © ©
A L] A A
0 ]
Q AN . ,
5 10 15 2 25 30



Table 1. Average Surface Gravily Anomaly of Mars Gravity Field

(A Priori Values and A Posteriori¥rrors from STS Data.)
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Averaging Kernel 1° 1° ]
59.3 km 29.65 km 29.65 Kill

A Priori Values of Average Surface Gravity Anomaly.

626.29 626.29 924.5

A Posteriori Errors in Average Surface Gravity Anomaly

Low-Low Satellite

Separation Distance, A 50 km 100 km 100 km
STS Data Noise (Gravity Anomalies in milligals)
System mimn/sec

High-Low 0.01 11.44 (1.83)" - 197.5 (21.36)

Low-Low 0.001 2.76 (0.44) 152 (0.24) 60.52 (6.55)
Low-Low 0.005 951 (152) 5.71 (0.91) 143.15 (15.48)
Low-Low 0.01 15.38 (2.46) 9.51 (1.52) 1S2.31 (19.72)
High-Low 0.1 42.43 (6.78) - 328.4 (35.52)

Low-Low 0.1 61.54 (9.83) 41.95 (6.70) 328.22 (35.50)

*Entries inside parentheses are the ratios of a posteriori
errors to a Priori values expressed in percentages.
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